반응형
# main.py
if __name__ == '__main__':
args = parse_args()
if args.option == 'train':
train(args)
else:
evaluate(args)
# set env
def init_env(config, port=0):
# get scenario
scenario = config.get('scenario')
if scenario.startswith('atsc'): # atsc env: set port parameter
if scenario.endswith('large_grid'): # atsc-large_grid env
return LargeGridEnv(config, port=port)
else: # atsc-real_net env
return RealNetEnv(config, port=port)
else: # cacc env
return CACCEnv(config)
# large_grid_env.py
./envs/large_grid_data
반응형
'논문 리뷰 > RL' 카테고리의 다른 글
PPO(Proximal Policy Optimization Algorithms) (0) | 2021.08.06 |
---|---|
TRPO(Trust Region Policy Optimization) (0) | 2021.08.02 |
DRQN1 (0) | 2021.05.12 |
DRQN (0) | 2021.03.25 |
04. Dynamic Programming (0) | 2021.03.22 |
03. Finite Markov Decision Process (0) | 2021.03.20 |
댓글