본문 바로가기
논문 리뷰/RL

code

by xi2d 2021. 7. 26.
반응형

# main.py

if __name__ == '__main__':
    args = parse_args()
    if args.option == 'train':
        train(args)
    else:
        evaluate(args)

 

 

# set env
def init_env(config, port=0):
    # get scenario
    scenario = config.get('scenario')
    if scenario.startswith('atsc'): # atsc env: set port parameter
        if scenario.endswith('large_grid'): # atsc-large_grid env
            return LargeGridEnv(config, port=port)
        else: # atsc-real_net env
            return RealNetEnv(config, port=port)
    else: # cacc env
        return CACCEnv(config)

 

 

# large_grid_env.py

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

./envs/large_grid_data

 

 

 

 

 

반응형

'논문 리뷰 > RL' 카테고리의 다른 글

PPO(Proximal Policy Optimization Algorithms)  (0) 2021.08.06
TRPO(Trust Region Policy Optimization)  (0) 2021.08.02
DRQN1  (0) 2021.05.12
DRQN  (0) 2021.03.25
04. Dynamic Programming  (0) 2021.03.22
03. Finite Markov Decision Process  (0) 2021.03.20

댓글